Light energy to bioelectricity: photosynthetic microbial fuel cells.

نویسندگان

  • Miriam Rosenbaum
  • Zhen He
  • Largus T Angenent
چکیده

Here, we reviewed five different approaches that integrate photosynthesis with microbial fuel cells (MFCs)-photoMFCs. Until now, no conclusive report has been published that identifies direct electron transfer (DET) between a photosynthetic biocatalyst and the anode of a MFC. Therefore, most recent research has been performed to generate sufficient electric current from sunlight with either electrocatalysts or heterotrophic bacteria on the anode to convert photosynthetic products indirectly. The most promising photoMFCs to date are electrocatalytic bioelectrochemical systems (BESs) that convert hydrogen from photosynthesis and sediment-based BESs that can convert excreted organics from cyanobacteria or plants. In addition, illumination on the cathode may provide either oxygen for an electrocatalytic reduction reaction or a promising anoxygenic biocathode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of light on the production of bioelectricity and added-value microalgae biomass in a Photosynthetic Alga Microbial Fuel Cell.

This study demonstrates the simultaneous production of bioelectricity and added-value pigments in a Photosynthetic Alga Microbial Fuel Cell (PAMFC). A PAMFC was operated using Chlorella vulgaris in the cathode compartment and a bacterial consortium in the anode. The system was studied at two different light intensities and the maximum power produced was 62.7 mW/m(2) with a light intensity of 96...

متن کامل

Treatment of Brewery Wastewater and Production of Electricity through Microbial Fuel Cell Technology

Renewable energy is an increasing need in our society. Microbial fuel cells (MFCs) represent a new method for treating wastewater and simultaneously producing electricity. In the present study, we demonstrated the feasibility of bioelectricity generation from brewery wastewater treatment using a mediator less MFC at different pH. We also demonstrated that addition of readily utilizable substrat...

متن کامل

Sulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell

The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...

متن کامل

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

A Review of Microbial Fuel Cells for Bioelectricity Generation

In this review a brief description of microbial fuel cells technology for generation of bioelectricity has been done. The review is mainly intended to focus on standard configurations, electrode materials, membranes, substrates, microorganisms and generation of bioelectricity. Being low in power generation, MFC is a slow pacing technology but has the enormous ability to act as long term sustain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in biotechnology

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2010